

Leo Lambert Vice President & Technical Director, EPTAC

Understanding Solderability Testing for Printed Circuit Boards and Components

ABOUT THE PRESENTER

eptac Webinarseries

Solderability What is IT?

According to IPC-T-50 • Base Solderability

 Is the ease with which a metal or metal alloy surface can be wetted by molten solder under minimum realistic conditions.

Solderability

 The ability of a metal to be wetted by molten solder.

Leo Lambert Vice President & Technical Director, EPTAC

Purpose

 Solderability evaluations are made to verify the components will meet the requirements of the standards and determine that storage has no adverse effect on the ability to solder components to boards

Leo Lambert Vice President & Technical Director, EPTAC

New Program

• EPTAC is introducing a new program which will go in detail with these 2 documents and will enhance your knowledge when conversing with your suppliers and contract manufacturers.

Leo Lambert Vice President & Technical Director, EPTAC

Goals

- Be knowledgeable of the J-STD-002 and 003 documents
- Differentiate different surface conditions
- Determine acceptability requirements of the testing
- Be able to apply the specifications requirements

ABOUT THE PRESENTER

Overview

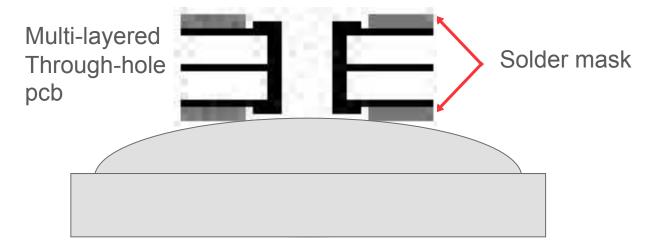
- Interpretation of solderability results is a difficult task
- Discriminative criteria and skills set will be reviewed
- Similar methods between wire/terminals and pcbs
 - Unique J-STD-003 information will be listed within ()
- The primary criteria for solderability
 - is the ability for solder to sufficiently wet

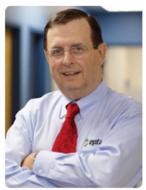
Leo Lambert Vice President & Technical Director, EPTAC

Concerns in determining solderability

The question is: When it doesn't solder, do we know why?

- Is it a Solderability issue?
 - Is the solder oxidizing
 - Is there an increase in the intermetallic layer?


ABOUT THE PRESENTER



Concerns in determining solderability

A Soldering Ability issue

- Solder Ability = the ability of an item to be soldered
 - With a through hole lead, the solder would wick up into the pth.

ABOUT THE PRESENTER

Visual Method Classification

1.3.1 (1.5.1) Visual Acceptance Criteria

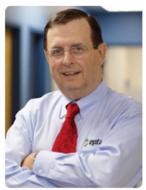
- Leaded applications:
 - Test A, B, C, D, S [smt]
 - (003) Test A, B, C, D, E [smt]
- Lead-Free applications:
 - Test A1, B1, C1, D1, S1
 - (003) Test A1, C1, D1, E1 [smt]

Leo Lambert Vice President & Technical Director, EPTAC

Force Measurement Tests

1.3.2 (1.5.2) Force Measurement Tests

- Leaded Applications:
 - Test E, F, G
 - (003) Test F
- Lead Free applications:
 - Test E1, F1, G1
 - (003) Test F1


ABOUT THE PRESENTER

Upcoming Changes 1.4 (1.8) Coating Durability

Durability of the coating:

- Category 1: surfaces that will be soldered within a short period of time (< 6 months) from the time of testing and are likely to experience a minimum of thermal exposures before soldering.
- Category 2: surfaces that will be soldered after an extended time from the time of testing, and which may see limited thermal exposures before soldering
 - This is the default coating for PSB's
- Category 3: surfaces whose solderability may be come degraded from storage (> 6 months) or from multiple thermal exposures.
 - This is the default coating for "tin" based surfaces

ABOUT THE PRESENTER

eptac webinarseries

General Material Requirements

Solder

- Tin/lead testing, the solder **shall** be
 - Sn6oPb40, (SN62/Pb36/2/Ag) or Sn63Pb37
 - Test S and (E) shall be Sn60Pb40 or Sn63Pb37, mesh size of -325/+500, and flux ROL1
 - Other solder paste may be used upon agreement between user and supplier
- Lead-Free testing the solder **shall** be
 - Sn96.5Ag3.0Cu0.5 (SAC305)
 - Test S1 and (E1) shall be SAC305, mesh size of -325/+500, and flux type to be agreed upon between user and supplier

Leo Lambert Vice President & Technical Director, EPTAC

General Material Requirements

Flux

- Tin/lead testing the flux **shall** be an activated rosin flux #1
- Lead free testing the flux shall a activated rosin flux #2
- Flux used in preparation of the standard copper wrapping wires for tests C and C1 shall conform to ROL1, and shall be used for preparation, and shall not be used in performing the solderability tests

Table 3-1 Flux Compositions

Constituent	Composition by weight percent	
Constituent	Flux #1	Flux #2
Colophony	25 +/- 5	25 +/- 5
Diethylammonium hydrochloride	0.15 +/- 0.01	0.39 +/- 0.01
Isopropyl Alcohol (IPA)	Balance	Balance
Weight of Chlorine as % of solids	0.2	0.5

Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarserie

1.6 (1.9) Limitations

1.6 (1.9) Limitations

- This standard is not a pre-tinning exercise, but rather a destructive solderability test.
 - Components after such solderability test **shall** only be used with agreement between the user and supplier

Leo Lambert Vice President & Technical Director, EPTAC

General Requirements

3.3.3.1 Referee Magnification

Referee magnification shall be 70X for fine pitch components (0.5 mm [0.020 in]) and, 30X for all other lead sizes

3.3.4 (3.3.4) Dipping Equipment

- The equipment used **shall** be capable of
 - Controlling the emersion rate
 - Dwell time
 - Dwell depth
 - Sample holding fixtures **shall** avoid heat loss and assure consistent test results

ABOUT THE PRESENTER

General Requirements

3.4.1 (3.4.1) Specimen Preparation and Surface Condition

- All solderable surfaces **shall** be tested in the condition that they would normally be during assembly
- They **shall** be handled without creating contamination,
- The leads **shall** not be wiped, cleaned, scraped or abraded
- Any lead forming shall be specified in applicable procurement documentation, and be completed before testing
- Any removal of insulation shall be completed before testing and such that there is no strand separation or wire damage

Leo Lambert Vice President & Technical Director, EPTAC

General Requirements

3.5.2 (3.5.2) Solder Contamination Control

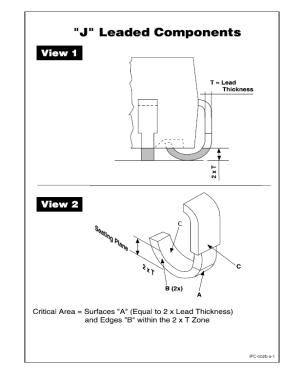
- The solder used for solderability testing **shall** be chemically or spectrographically analyzed and replaced depending on the contamination levels, see *Table 3-4 Maximum Limits of Solder Bath Contaminant*

ABOUT THE PRESENTER

Table 3-4 Maximum Limits of Solder Bath Contaminant

Contaminant	Maximum Contaminant Weight Percentage Limit Sn Pb Alloys ^(1,2)	Maximum Contamination Weight Percentage Limit Lead-free Alloys ^(3,4)
Copper	0.300	0.800
Gold	0.200	0.200
Cadmium	0.005	0.005
Zinc	0.005	0.005
Aluminum	0.006	0.006
Antimony	0.500	0.500
Iron	0.020	0.020
Arsenic	0.030	0.030
Bismuth	0.250	0.250
Silver	0.100	4.000
Nickel	0.010	0.010
Lead	N/A	0.100

Notes:


1. The tin content of the solder **shall** be maintained within $\pm 1\%$ of the nominal alloy being used. Tin content **shall** be tested at the same frequency as testing for copper/gold contamination. The balance of the bath **shall** be lead and/or the items listed above. 2. The total of copper, gold, cadmium, zinc, and aluminum contaminants **shall** not exceed 0.4%. Not applicable to lead-free alloys. 3. The tin content of the solder **shall** be maintained within $\pm 1\%$ of the nominal alloy being used. Tin content **shall** be tested at the same frequency as testing for copper/silver concentration. The balance of the bath **shall** be the items listed above. 4. Maximum contamination limits are applicable for Sn96.5Ag3.0Cu0.5 (SAC305) per J-STD-006. Other Lead-free solder alloy contamination limits may be used upon agreement between user and vendor.

Leo Lambert Vice President & Technical Director, EPTAC

Test A/A1: Solder Dip and Look Test, (Edge Dip Test)

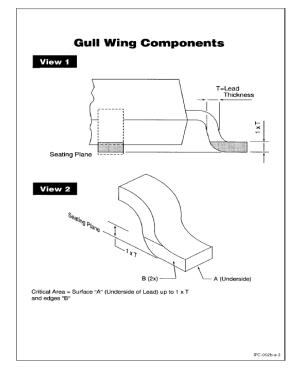
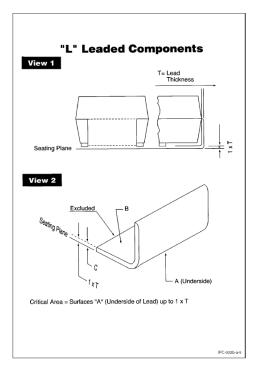


Figure A-1



Leo Lambert Vice President & Technical Director, EPTAC

Test A/A1: Solder Dip and Look Test, (Edge Dip Test)



Figure A-6

Leo Lambert Vice President & Technical Director, EPTAC

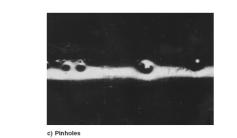
TERMINAL _ROUND_LEAD SCALE: 10 SCALE SCALE

.020 DIA X 1.00

.032 DIA X 1.00

.040 DIA X 1.00

10X

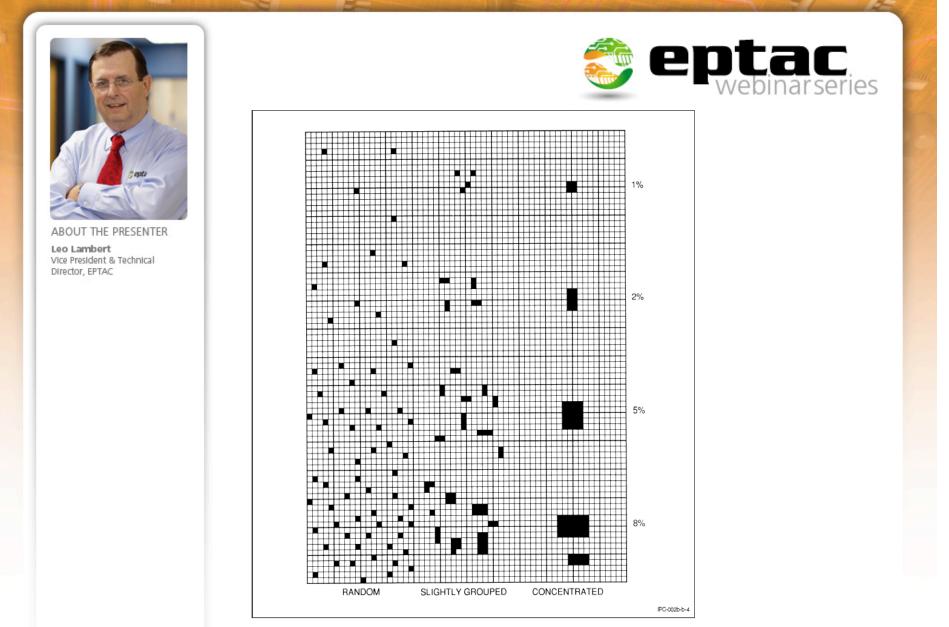

CRITICAL AREA ENTIRE 25 mm LG. SURFACE STARTING AT 1.3 mm FROM BODY

REF: EIA

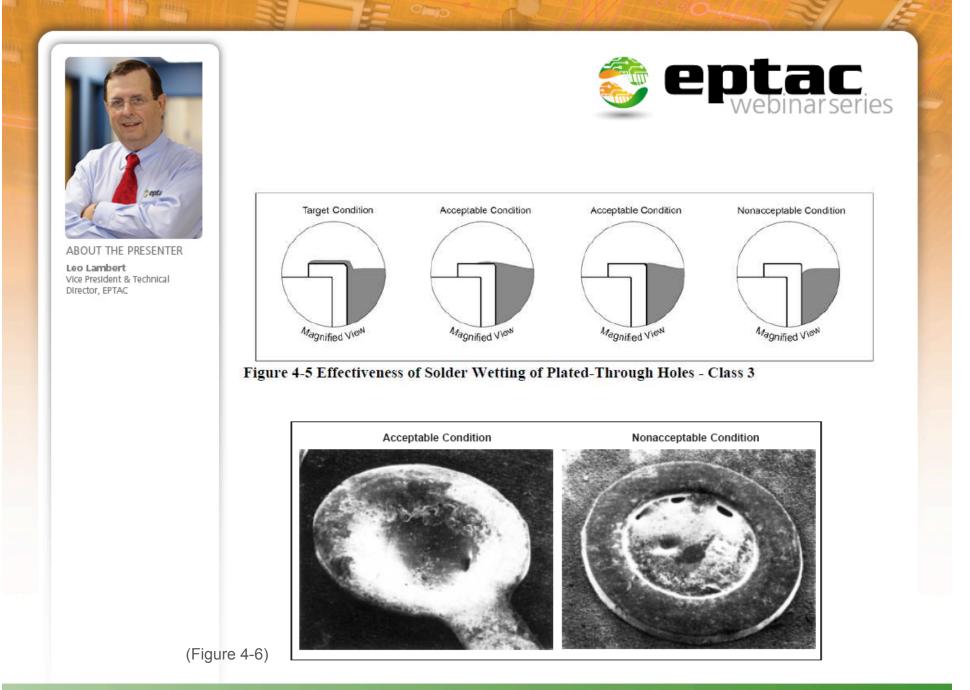
Test A/A1: Solder Dip and Look Test, (Edge Dip Test)

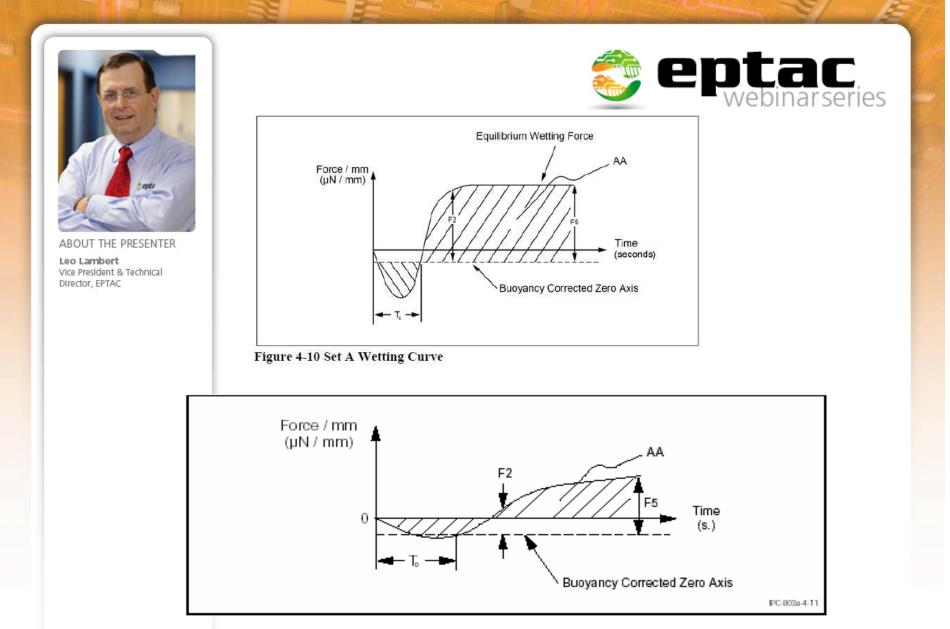
a) Dewetting

IPC-002b-b-2a, b-2b, b-2c

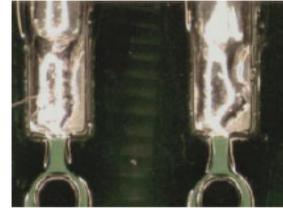


....

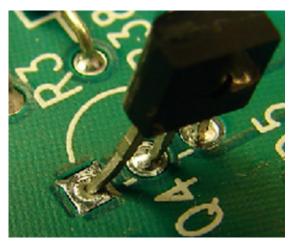

LEGEND: INVISIBLE TO OPPOSITE


VISIBLE

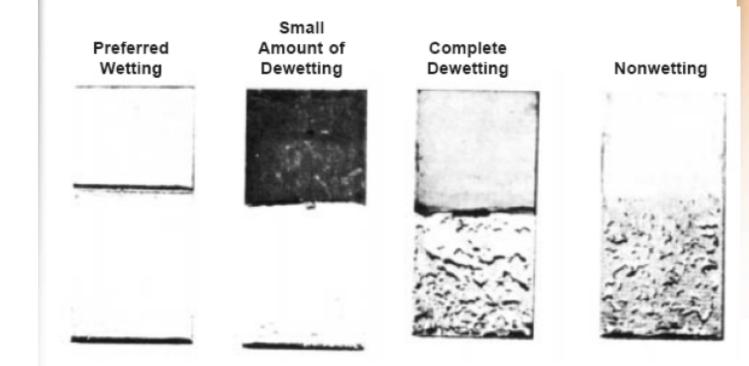
IPC-002b-b-:



Leo Lambert Vice President & Technical Director, EPTAC



Check for Wetting/ Dewetting



Leo Lambert Vice President & Technical Director, EPTAC

Check for Wetting/ Dewetting

Leo Lambert Vice President & Technical Director, EPTAC

Thank You

Leo Lambert Vice President & Technical Director, EPTAC

Further Information

For questions regarding this webinar, please contact Leo Lambert at <u>leo@eptac.com</u>

For information on any of EPTAC's or IPC's Certification Courses, please visit our website at <u>http://www.eptac.com</u>