

Leo Lambert Vice President & Technical Director, EPTAC

The Fundamentals of Solder Joint of Solder Joint Design – Part 1 – Through Hole Technology (THT)

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

SOLDER JOINT CRITERIA

Designed for:

- Electrical conductivity
- Mechanical stability
- Heat dissipation

Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries

SOLDER JOINT CRITERIA

Solder Joint Must Have

- Ease of manufacturing
- Simplicity of repair
- Inspectable

Leo Lambert Vice President & Technical Director, EPTAC

SOLDER JOINT DESIGN

Solder joint are typically designed around the weakest cross sectional area of the weakest member of the joint itself.

ABOUT THE PRESENTER

Design Evaluation

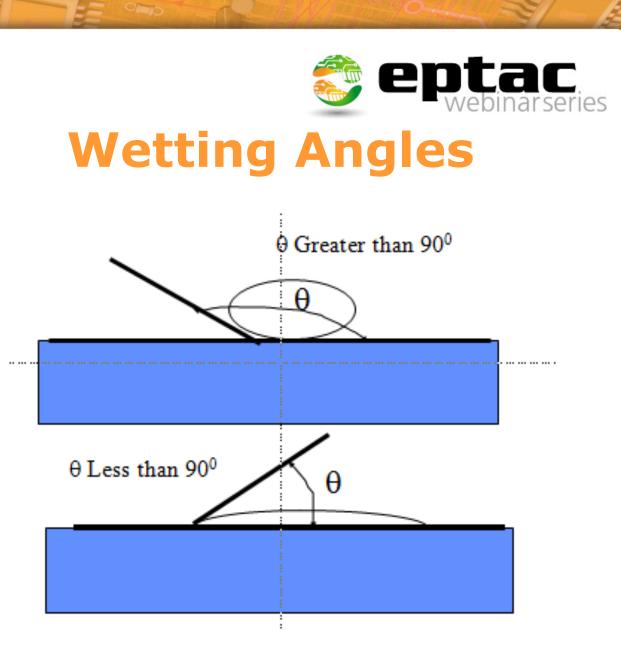
- Know the weakest part of the solder joint
- Know the environment the solder joint will be subjected to in its useful life
- Understand the metallurgy of cooling solder
- Check stress distribution of the solder joint and the part being soldered.

Leo Lambert Vice President & Technical Director, EPTAC

ABOUT THE PRESENTER

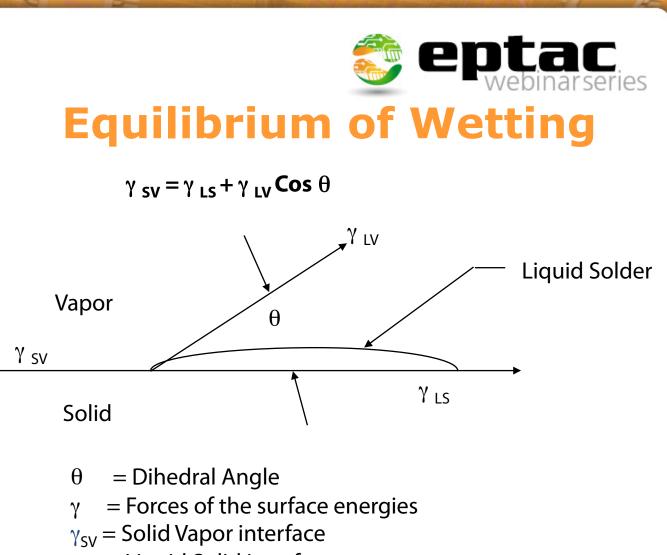
Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries


Overview of Soldering

What does it take to make a solder joint:

- Properly prepared materials
- Properly designed materials
- Fluxes
- Solder
- Heat
- Metallurgical bond



Leo Lambert Vice President & Technical Director, EPTAC

Leo Lambert Vice President & Technical Director, EPTAC

- γ_{LS} = Liquid Solid interface
- γ_{LV} = Liquid Vapor interface

Leo Lambert Vice President & Technical Director, EPTAC

Liquid Forces

Liquids have two forces:

- Cohesive
- Adhesive

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Cohesive Liquid Forces

Will tend to make the solder ball up on the surfaces

- Can create either a:
- Non-Wet condition or
- De-wet condition

ABOUT THE PRESENTER

Adhesive Liquid Forces

- Adhesive forces will allow the solder to wet the solid base metal.
- Will create the capillary action up into plated through holes
- Will allow the solder to spread over the surfaces being soldered

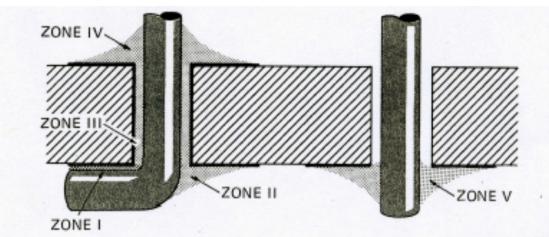
Leo Lambert Vice President & Technical Director, EPTAC

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries

Plated Through Hole Pads


The design is a compromise:

- Board density and minimum electrical spacing require small pads
- Joint strength and reliability require as large a pad as possible

Leo Lambert Vice President & Technical Director, EPTAC

Plated Through Hole Solder Joint

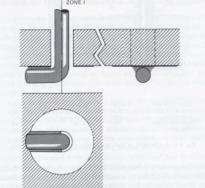
ASSUME:		
Board thickness 0.0625"	Wire Dia	.032"
Copper 2 oz.		
Land trace	Fillet above board	.005"
Land Dia. (Hole)	Solder	Sn 63
Hole Dia	Temperature rise	

Fig. 1-1. A schematic of the average fillet used for this calculation.

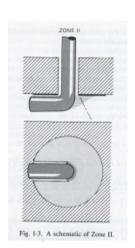
Leo Lambert Vice President & Technical Director, EPTAC

Parameters

0.02	Land/line width			
0.032	D w = WIRE DIAMETER			
0.04	D _h = HOLE DIAMETER			
8.04E-04	$A_{\rm C} = \pi \ ^{*}({\rm Dw}/2)^2$			
0.12	OUTSIDE DIAMETER OF LAND			
8.25	μ = RESISTIVITY RATIO			
7.5	2 OZ COPPER WIRE CONDUCTIVITY			
0.04	L _i = lap joint length = π/4μD			
5.85	The strength ratio of OFHC/SN63 is β			
31	Tensile strength of 20 AWG wire in pounds			
9.8	20 GAUGE WIRE CAN CONDUCT 9.8 AMPS AT 122F			
7.5	Conductivity of 2 oz copper with a land width or 0.020, in amps			
10	Peel strength 1 square inch of 1 oz copper in pounds			
14	Peel strength 1 square inch of 2 oz copper in pounds			
0.778	f function of hole clearance from table 1-4			
0.0625	T _b = thickness of the board			
0.02	H _C = height for 2 oz copper layer			
0.005	$H_1 = SIDE 1 FILLET$			
0.02	H_2 = height for single sided board bottom side			
6.28E-02	L _{cc} =π/2*D _h			


Leo Lambert Vice President & Technical Director, EPTAC

Mechanical Strength	Zone 1 Lead clinched onto pth pad		Zone 2 PTH pad opposite of clinched lead		Zone 3 Plated Through Hole		Zone 4 Top side pth		Zone 5 Straight Through Lead, Single sided board	
Lj = $\pi/4 \beta D$	X =	3.68			$A_s = \pi^* D_W^* T_b$	6.28E-03	$A_{s} = \pi * D_{h} * f *$ H_{1}	4.89E-04	$\begin{array}{c} A_{s} = \pi * D_{h} * f * \\ H_{2} \end{array}$	1.96E-03
X = (p/4) * ((b (DW/Lj))					$X^*A_s = \beta * A_c$	0.75	$X^*A_s = \beta ^*A_c$	9.62	$X * A_s = \beta * A_c$	2.41
Critical copper area, L _{cc} =π/2*D _h										
	1/X =	27.2%			1/X =	133.5%	1/X =	10.4%	1/X =	41.6%
From table the tensile strength of copper AWG 20 gauge is 31 pounds										
Zone can support	Lbs	8.43		8.43		41.40		3.22		12.88
Comparison to tensile strength of AWG 20 Gage wire at 31 pounds		27.2%		27.2%		133.5%		10.4%		41.6%
Comparison to peel strength of 1 oz copper foil at 10 lbs/in ²		84.3%		84.3%		414.0%		32.2%		128.8%



Leo Lambert Vice President & Technical Director, EPTAC

Fig. 1-2. A schematic of Zone I.

Mechanical Strength	Zone 1 Lead clinched onto pth pad		Zone 2 PTH pad opposite of clinched lead	
Lj = (π/4) β D	X =	3.68		
X = (p/4) * ((b (DW/Lj))				
Critical copper area, $L_{cc}=\pi/2^*D_h$				
	1/X =	27.2%		
From table the tensile strength of copper AWG 20 gauge is 31 pounds				
Zone I & II can support	Lbs	8.43		8.43
Comparison to tensile strength of AWG 20 Gage wire at 31 pounds		27.2%		27.2%
Comparison to peel strength of 1 oz copper foil at 10 lbs/ in ²		84.3%		84.3%

Leo Lambert Vice President & Technical Director, EPTAC

Solder Joint Zone III

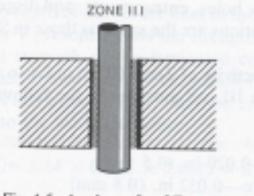


Fig. 1-5. A schematic of Zone III.

	Zone 3 Plated Through Hole	
	A _s =π*D _W *T _b	6.28E-03
	$X^*A_s = \beta * A_c$	0.75
	1/X =	133.5%
From table the tensile strength of copper AWG 20 gauge is 31 pounds		
Zone 3 can support		41.40
Comparison to tensile strength of AWG 20 Gage wire at 31 pounds		133.5%
Comparison to peel strength of 1 oz copper foil at 10 lbs/ in ²		414.0%

Leo Lambert Vice President & Technical Director, EPTAC

Solder Joint Zone IV

ZONE IV

Fig. 1-6. A schematic of Zone IV.

	Zone 4 Top side pth	
	$A_s = \pi * D_h^* f^* H_1$	4.89E-04
	$X^*A_s = \beta ^*A_c$	9.62
	1/X =	10.4%
From table the tensile strength of copper AWG 20 gauge is 31 pounds		
Zone 4 can support		3.22
Comparison to tensile strength of AWG 20 Gage wire at 31 pounds		10.4%
Comparison to peel strength of 1 oz copper foil at 10 lbs/in ²		32.2%

Leo Lambert Vice President & Technical Director, EPTAC

Zone 5

Solder Joint Zone V

ZONE V		Straight Through Lead, Single sided board	
III.		$A_s = \pi * D_h^* f^* H_2$	1.96E-03
		$X * A_s = \beta * A_c$	2.41
		1/X =	41.6%
Cross-Section	From table the tensile strength of copper AWG 20 gauge is 31 pounds		
	Zone 5 can support		12.88
	Comparison to tensile strength of AWG 20 Gage wire at 31 pounds		41.6%
	Comparison to peel strength of 1 oz copper foil at 10 lbs/in ²		128.8%
		4	

Leo Lambert Vice President & Technical Director, EPTAC

Comparison of Zones

	Tensile strength of solder joint, psi	Joint strength compare to wire strength, 20 AWG = 31#	Joint strength compared to peel strength of the 1 oz. foil, 1oz = 10psi on FR-4
Zone I	8.43	27.2%	84.3%
Zone II	8.43	27.2%	84.3%
Zone III	41.4	133.5%	414%
Zone IV	3.22	10.4%	32.2%
Zone V	12.8	41.6%	128.8%

Leo Lambert Vice President & Technical Director, EPTAC

Thank You

Questions?

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Further Information

Our Next session will discuss the design and strength of Surface Mount Leads

For questions regarding this webinar, please contact Leo Lambert at <u>leo@eptac.com</u> or call at 800-643-7822 ext 215

For information on any of EPTAC's or IPC's Certification Courses, please visit our website at <u>http://www.eptac.com</u>