

Leo Lambert Vice President & Technical Director, EPTAC

IPC -7095C Design and Assembly Process Implementation For BGAs

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

eptac webinarseries

Overview

With the introduction of BGA components, things had to change:

- New design
- New assembly process
- New repair process
- New inspection techniques

All information in this presentation is adapted from the IPC-7095C document

Leo Lambert Vice President & Technical Director, EPTAC

Scope

- Covers the challenges for implementing all types of BGA components
- Information in document focuses on inspection, repair and reliability with BGA components

Leo Lambert Vice President & Technical Director, EPTAC

Purpose

- To provide practical and useful information to users of BGA components
- Target audience is managers, design and process engineers, operators and technicians

Leo Lambert Vice President & Technical Director, EPTAC

Intent

- This document identifies many of the issues involved which will influence the implementation of a robust BGA assembly process
- The accept/reject criteria is found in J-STD-001 and IPC-A-610

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

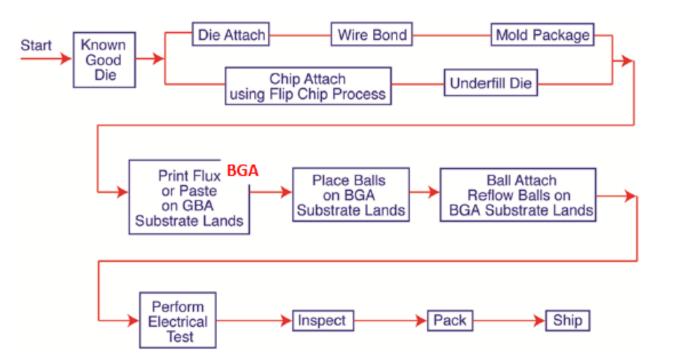
Applicable Documents

There is a list of • 27 IPC Documents • 16 JEDEC Documents

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Why BGA Components


- Peripheral devices with 1.00 mm pitch have become commonplace, however these packages cannot accommodate more than 84 pins.
- Larger pin count devices require lead pitches on 0.65 mm, 0.5 mm or 0.3 mm
- Therefore at these pitches leads are very fragile and susceptible to damage.
- The BGA eliminated lead and coplanarity problems

Leo Lambert Vice President & Technical Director, EPTAC

BGA Package Manufacturing Process

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Infrastructure

• Land Patterns and circuit board considerations.

Technology comparison

МСМ	Technology Description	Attributes
Type 1	Common Technology Package	Multiple same type chips, in plane
Type 1S	Common Technology Package	Multiple same type chips, stacked
Type 1F	Common Technology Package	Multiple same type chips, folded
Type 2	Mixed Technology Package	Mixed IC technology package, in plane
Type 2S	Mixed Technology Package	Mixed IC technology package, stacked
Type 2F	Mixed Technology Package	Mixed IC technology package, folded
Туре 3	System in Package	Mixed ICs and discrete devices, in plane
Type 3S	System in Package	Mixed ICs and discrete devices, stacked
Type 4	Optoelectronic System Package	Mixed technology for optoelectronics

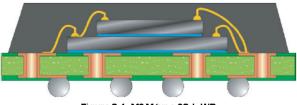


Figure 3-4 MCM type 2S-L-WB

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Conductors Between BGA Connections

• This gets into the size of the BGA and the number of traces which can be used between the balls of the BGA component

Table 3-2 Number of escapes vs. array size on two layers of circuitry

		Number of Conductors Between Vias (• •)			
		1	2	3	
Array Size	Total Leads	• •	• •	• •	
14 X 14	196	192	196	196	
16 X 16	256	236	256	256	
19 X 19	361	272	316	352	
21 X 21	441	304	356	400	
25 X 25	625	368	436	496	
31 X 31	961	464	556	640	
35 X 35	1225	528	638	736	

Leo Lambert Vice President & Technical Director, EPTAC

Conductor Width to Pitch Relationship

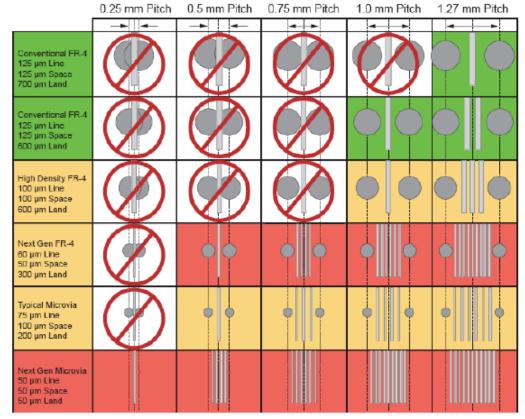
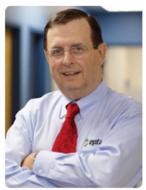


Figure 3-5 Conductor width to pitch relationship



Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries

Infrastructure

- Assembly Equipment Impact
- Stencil Requirements
- Inspection Requirements
- Test

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Limitations and Issues

- Visual inspection
- Moisture sensitivity
- Rework
- Cost
- Availability
- Voids in BGA
- Open joints
- Head-on-Pillow phenomenon
- Standards and their adoption
- Reliability concerns

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Limitations and Issues

3.5.8 Pad Cratering – defined as a separation of the pad from the PCB resin/weave composite or within the composite immediately adjacent to the pad, also know as "laminate crack"

Figure 3-9 Examples of Pad Cratering

Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries

Limitations and Issues

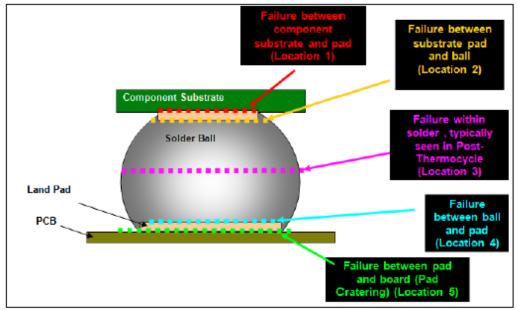


Figure 3-10 Various Possible Failure Modes for a BGA Solder Joint

ABOUT THE PRESENTER

Component Consideration

- 4.1 Semiconductor Packaging Comparison and Drivers
- 4.2 Die Mounting in the BGA Package

Leo Lambert Vice President & Technical Director, EPTAC

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

eptac webinarseries

BGA Standards

4.3.1 Industry Standard

- BGA Package
- Fine Pitch BGA Package
- Die Size
- Ball Pitch
- Land Pattern Approximation
- BGA package outline
- Ball size relationships
- Package on Package
- Coplanarity

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Component Consideration

4.4 Component Packaging Style Consideration

- Base Material
- Solder ball Alloy
- Ball attachment process
- Ceramic BGA, Column Grid Array
- Multiple Die packaging

Leo Lambert Vice President & Technical Director, EPTAC

eptac Webinarseries

Component Consideration

- 4.5 BGA component and Sockets
- 4.6 Construction Materials
- 4.7 Package Design
- 4.8 Acceptance Criteria and shipping Format

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Boards and Other Mounting Structures

Section 5.0 covers:

- Laminates or mounting structures
- Laminate properties
- Surface Finishes
 - Solderable Coatings

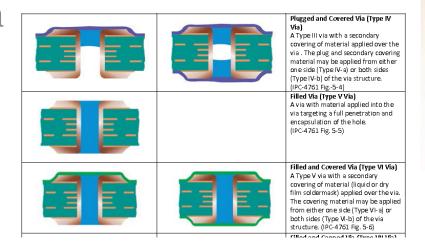
Leo Lambert Vice President & Technical Director, EPTAC

					- Allo	P
	Table 5-2	Key attributes	for various board	surface finishes		
	HASL SnPb/SnCu*	OSP	Electroless NI/Immersion AU	E lectrolytic Ni/E lectroplated AU	Immersion Silver**	Immersion Tin
Shelf Life proper Handling	1 Year	6 Months	> 1 Year	> 1 Year	6 Months	6 Months
Handling	Normal	Avoid physical contact	Normal	Normal	Avoid physical contact	Avoid physical contact
SMT land Surface topology	Domed/Flatter	Flat	Flat	Flat	Flat	Flat
Multiple assembly reflow cycles	Good, although intermetallics increase/need robust laminate	Fair, better with thick coatings; may see bare copper if reflowed with lead-free solder paste	Good	Good	Good	Good
Hole fill after multiple reflow cycles	No Concerns	May have problems after 2x reflow.	No concerns	No concerns	No concerns	May have problems after 2x reflow.
Use on thick PCBs	Barrels difficult to fill and clear	PTH fill concerns	Improved barrel reliability	Improved barrel reliability	PTH fill concern	PTH fill concern
Use in thin PCBs	No, prone to warping/Avoid	Yes	Yes	Yes	Yes	Yes
Solder joint reliability	Good	Good	BGA "black pad" concerns	Gold embrittlement concerns	Planar microvoid concerns	Good
			Sporadic bi	rittle fracture		
Card edge contacts	Additional plating operation	Additional plating operation	Additional plating operation	No additional plating	Additional plating operation	Additional plating operation
Wire bonding	No	No	No	Yes	No	No
Test point probing	Good	Poor, unless solder applied during assembly	Good	Good	Good	Good
Exposed Copper after Assembly	No	Yes	No	No	No	No
Switches/Contacts	No	No	Yes	Yes	Yes	No
Waste Treatment and Safety in PCB Fabrication	Poor/Fair	Good	Fair	Fair	Poor	Good
Process Control	Thickness control concerns	Fair	Phosphorus content concerns	Gold thickness control concerns	Micro-etch and plating concerns	Tin whisker concerns
Coating thickness/µm	0.8 - 0.38	0.2 - 0.5	3-7/0.05-0.10	.8 – 2.5	0.07 - 0.10	1.0 – 1.3
General Cost Comparison	1	0.4 - 0.6	2.0 - 3.0	1.2 – 1.5	1.1 – 1.6	~0.8

* Tin copper alloy is the preferred alloy for lead-free HASL

** For reflow operation >1 year if sealed in Moisture Membrane Bag (MMB)

ABOUT THE PRESENTER


Leo Lambert Vice President & Technical Director, EPTAC

Boards and Other Mounting Structures

5.4 Solder Mask

- Wet and Dry Film mask
- Photoimageable soldermask
- Via Protection

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Exactly September 2015 September 201

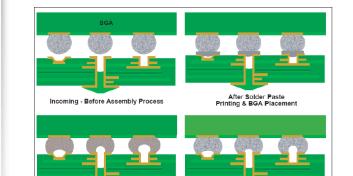


Figure 6-20 Via-in-pad process descriptions

Post Reflow Soldering

IPC-20908-0-

During Reflow Soldering

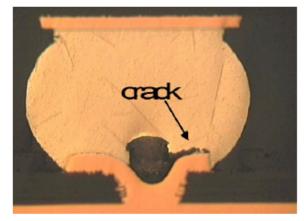


Figure 6-22 Microvia in pad voiding

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

PCB Assembly Design Considerations

6.4 Impact of Wave Solder on Top Sided BGAs

6.5 Testability and test points

6.6 Other design for Mfg issues

6.7 Thermal Management

6.8 Documentation and electronic Data Transfer

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Septac Webinar series Assembly of BGA to the PCB - Section 7

- Solder paste
 - Stencils
 - Powder Size
 - Paste volume
- Component Placement and Insp

• Reflow and profile

Table 7-1 Particle size comparisons

Solder paste type	Mesh	Maximum particle size [µm]
Type 2	-200/+325	75
Type 3	-325/+500	53
Type 4	-400/+500	38
Type 5	-500	25

Leo Lambert Vice President & Technical Director, EPTAC

Time and Temp Profiles

Table 7-3 Profile comparison between SnPb and SAC Alloys

Profile Topic	SnPb Alloy Profile	Mixed/Backward Compatibility Profile	Pb-Free Alloy (SAC)/Forward Compatibility Profile	
Alloy Solidus temperature	1830C	1830C/2200C	217-220oC	
Alloy soldering temp range	210-220oC	228-232oC	235-245oC	
Minimum peak reflow temperature	205°C	228oC	230°C	
Component ramp up rate	2-4oC / second *	2-4oC / second *	2-4oC / second *	
Component ramp down rate	2-6oC / second *	2-6oC / second *	2-6oC / second *	
Soak or preheat activation temperature	100-180oC *	100-180oC *	140-220oC *	
Soak or preheat activation time	60—120 seconds*	60–120 seconds *	60–150 seconds *	
Dwell time above liquidus	60—90 seconds	60–90 seconds	60–90 seconds	
Dwell time at peak temp.	20 seconds max	20 seconds min	20 seconds max	
* Verify with the supplier ** Coolest Temperature on the board				

Time and Temp Profiles

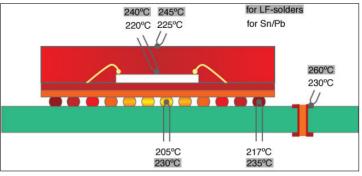


Figure 7-3 Examples of peak reflow temperatures at various locations at or near a BGA

Seate

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

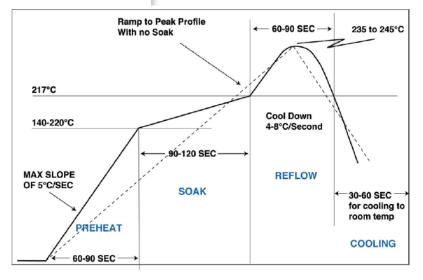
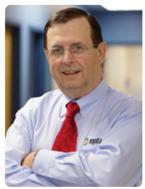
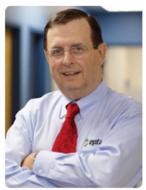



Figure 7-6 Schematic of reflow profile for lead-free assemblies



ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

Solution Contraction Contractic Contraction Contraction Contraction Contraction Contractic

- **Post SMT Process:**
- Conformal coatings
- Underfills
- Corner adhesives
- Inspections
 - X-ray
 - Visual/Optical

ABOUT THE PRESENTER

Leo Lambert Vice President & Technical Director, EPTAC

September 2015 Assembly of BGA to the PCB - Section 7

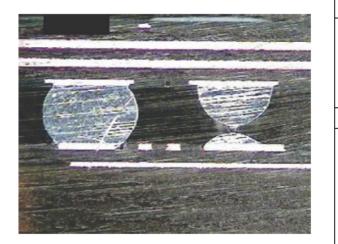
Rework and Repair

- Removal and Replacement
- Flux
- Paste
- Hot air system and profiles

Leo Lambert Vice President & Technical Director, EPTAC

Reliability and Defect Analysis

- Sections 8 discussed the application of the device and its reliability during its functional life.
- The basic thesis being the reliability of the solder joints when exposed to the operation life, thermal cycling and vibration cycling


Leo Lambert Vice President & Technical Director, EPTAC

Reliability and Defect Analysis

Section 9, defect and failure analysis

9.3.2 Solder Joint Opens Due to Interposer Warp

Possible Cause

- The failure appears to be due to insufficient paste release from the stencil or insufficient ball size.
- Warped package (smiling BGA) with comer balls lifted up

Potential Solution

- Check balls at incoming prior to assembly.
- Return package to supplier, Implement incoming inspection and or source audit,
 Apply extra solder paste on corner lands.

Leo Lambert Vice President & Technical Director, EPTAC

Thank You

Questions?

Leo Lambert Vice President & Technical Director, EPTAC

Further Information

For questions regarding this webinar, please contact Leo Lambert at <u>leo@eptac.com</u> or call at 800-643-7822 ext 215

For information on any of EPTAC's or IPC's Certification Courses, please visit our website at <u>http://www.eptac.com</u>