

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC/EIA J-STD-001 by the Numbers: Understanding the Key Supporting Documents

You are connected to our live presentation delivered via the internet. The webinar will begin shortly.

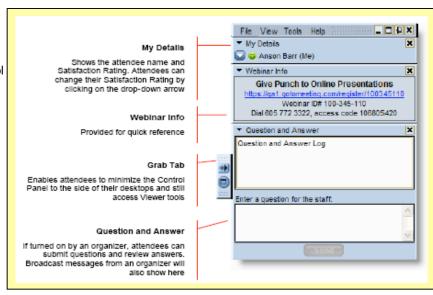
800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

Attendee Quick Reference


 You can ask questions by typing text directly to the presenter using the "Question and Answer" box

Control Panel Features:

Once you have joined our Webinar, you will see this GoToWebinar Control Panel and Grab Tab. The control panel contains three panes that can be expanded or collapsed by clicking the arrow on the left side of each pane.

To Leave a Webinar:

- From the Attendee Control Panel File Menu, select Exit – Leave Webinar
- 2. On the *Leave Webinar?* Confirmation dialog box, click **Yes.**

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

IPC/EIA J-STD-001 by the Numbers: Understanding the Key Supporting Documents

Sponsored by:

Supply & Services

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

J-STD-001

JOINT INDUSTRY STANDARD

Requirements for Soldered Electrical and Electronic Assemblies

IPC J-STD-001D

February 2005 Supersedes Revision C March 2000

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

The Specs as Mentioned J-STD-001

2.3 Joint Industry Standards4

IPC/EIA J-STD-002 Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires

J-STD-003 Solderability Tests for Printed Boards

J-STD-004 Requirements for Soldering Fluxes

J-STD-005 Requirements for Soldering Paste

J-STD-006 Requirements for Electronic Grade Solder Alloys and Fluxed and Non-Fluxed Solid Solders for Electronic Soldering Applications

IPC/JEDEC J-\$TD-020 Moisture/Reflow Sensitivity Classification for Plastic Integrated Circuit Surface Mount Devices

IPC/JEDEC J-STD-033 Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices

IPC/JEDEC-9701 Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

How 002 and 003 are mentioned in and used in J-STD-001

3.9.1 Solderability Electronic/mechanical components (including PCBs) and wires to be soldered shall¹¹ meet the solderability requirements of J-STD-002 or equivalent and printed boards shall¹¹ meet the requirements of J-STD-003 or equivalent. When a solderability inspection operation or

pretinning and inspection operation is performed as part of the documented assembly process, that operation may be used in lieu of solderability testing (see 3.9.2).

(11) Class 1-Defect Class 2-Defect Class 3-Defect

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

What Are J-STD-002 and 003

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

J-STD-002

1.3.1 Tests with Established Accept/Reject Criterion

- Test A Solder Bath/Dip and Look Test (Leaded Components and Stranded Wire)
- Test B Solder Bath/Dip and Look Test (Leadless Components)
- Test C Wrapped Wire Test (Lugs, Tabs, Hooked Leads, and Turrets)
- Test D Resistance to Dissolution/Dewetting of Metallization Test
- Test S Surface Mount Process Simulation Test

1.3.2 Test without Established Accept/Reject Criterion

- *Test E* Wetting Balance Test (Leaded Components)
- Test F Wetting Balance Test (Leadless Components)

These methods are included for evaluation purposes only. Data collected should be submitted to the IPC Wetting Balance Task Group for correlation and analysis.

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

J-STD-002 Coating Durability

Category 1 — Minimum Coating Durability Intended for surfaces that will be soldered within a short period of time (e.g., up to six months) from the time of testing and are likely to experience a minimum of thermal exposures before soldering (see 5.8).

Category 2 — Typical Coating Durability (for non-tin and non tin-lead finishes) Intended for surfaces finished with other than Sn or Sn/Pb coatings that will be soldered after an extended time from the time of testing and which may see limited thermal exposures before soldering (see 5.8).

Category 3 – Typical Coating Durability (default for tin and tin-lead finishes) Intended for surfaces finished with Sn or Sn/Pb coatings that will be soldered after an extended storage (e.g., greater than four months) from the time of testing and/or which see multiple thermal exposures before soldering (see 5.8).

Table 1-1 Steam Conditioning Categories for Component Leads and Terminations

Category 1	Category 2	Category 3		
No Steam	1 Hour ± 5 min.	8 hours ± 15 min.		
Conditioning	Steam	Steam		
Requirements	Conditioning	Conditioning		

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

IPC J-STD-003

- 1.5.1 Visual Acceptance Criteria Tests
 - Test A Edge Dip Test
 - Test B Rotary Dip Test
 - Test C Solder Float Test
 - Test D Wave Solder Test
 - Test E Surface Mount Simulation Test
 - Test A1, B1, C1, D1 and E1 are for Leadfree products

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

IPC J-STD-003

3.2.2 Flux The flux for tin/lead solderability tests shall be a standard activated rosin flux #1 having a composition of $25\% \pm 0.5\%$ by weight of colophony and $0.15\% \pm 0.01\%$ by weight diethylammonium hydrochloride (CAS 660-68-4), in $74.85\% \pm 0.5\%$ by weight of isopropyl alcohol (see Table 3-1).

Sponsored by:

Supply & Services

The flux for lead-free solderability tests shall be standard activated rosin flux #2 having a composition of $25\% \pm 0.5\%$ by weight of colophony and $0.39\% \pm 0.01\%$ by weight diethylammonium hydrochloride (CAS 660-68-4), in $74.61\% \pm 0.5\%$ by weight of isopropyl alcohol (see Table 3-1).

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

How 001 discusses 004

3.3 Flux Flux shall² be in accordance with J-STD-004 or equivalent.

Flux shall³ conform to flux activity levels L0 and L1 of flux materials rosin (RO), resin (RE), or organic (OR), except organic flux activity (2) Class 1-Defect Class 2-Defect Class 3-Defect

(3) Class 1-Not Est Class 2-Not Est Class 3-Defect

level L1 shall not3 be used for no-clean soldering.

When other activity levels or flux materials are used, data demonstrating compatibility shall³ be available for review (see 3.1).

Note: Flux or solder paste soldering process combinations previously tested or qualified in accordance with other specifications do not require additional testing.

Type H or M fluxes shall not² be used for tinning of stranded wires.

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-004

Table 1-1: Flux Identification System										
Flux Composition	Flux/Flux Residue	% Halide ¹	Flux Type ²	Flux Designator						
	Activity Levels	(by weight)								
	Low	<0.05%	L0	ROL0						
	Low	<0.5%	L1	ROL1						
Rosin	Moderate	<0.05%	M0	ROM0						
(RO)	Moderate	0.5-2.0%	M1	ROM1						
	High	<0.05%	H0	ROH0						
	riigii	>2.0%	H1	ROH1						
	Low	<0.05%	L0	REL0						
	Low	<0.5%	L1	REL1						
Resin	Moderate	<0.05%	M0	REM0						
(RE)	Moderate	0.5-2.0%	M1	REM1						
	High	<0.05%	H0	REH0						
	riigii	>2.0%	H1	REH1						
	Low	<0.05%	L0	ORL0						
	Low	<0.5%	L1	ORL1						
Organic	Moderate	<0.05%	M0	ORM0						
(OR)	Moderate	0.5-2.0%	M1	ORM1						
	High	<0.05%	H0	ORH0						
	riigii	>2.0%	H1	ORH1						
	Low	<0.05%	L0	INL0						
	LOW	<0.5%	L1	INL1						
Inorganic	Moderate	<0.05%	M0	INM0						
(IN)	Moderate	0.5-2.0%	M1	INM1						
	High	<0.05%	H0	INH0						
	High	>2.0%	H1	INH1						

^{1.} Halide measuring <0.05% by weight in flux solids and may be known as halide-free. This method determines the amount of ionic halide present (See Appendix B-10).

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-004, Flux Type

 Fluxes shall also be classified according to the corrosive or conductive properties of the flux or flux residues as shown in the following table

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

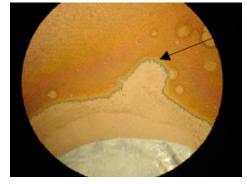
IPC J-STD-004, Test Requirements

Table 3-2 Test Requirements for Flux Classification

Flux Type	Copper Mirror	Corrosion	Quantitative Halide ¹ (CI,Br,F,I) (by weight)	Conditions for Passing 100 MΩ SIR Requirements ²	Conditions for Passing ECM Requirements		
LO	No evidence of	No evidence	<0.05%³	No along state			
L1	breakthrough	of corrosion	≥0.05 and <0.5%	No-clean state	No-clean state		
М0	Breakthrough in less than 50% of test area	Minor	<0.05% ³	Cleaned	Cleaned or No-clean state ⁴		
М1		corrosion acceptable	≥0.5 and <2.0%	or No-clean state ⁴			
Н0	Breakthrough in more than	in more than		<0.05% ³	Cleaned	Cleaned	
H1	50% of test area	corrosion acceptable	>2.0%	Cleaned			

- 1. This method determines the amount of ionic halide present (See Appendix B-10).
- If a printed circuit board is assembled using a no-clean flux and it is subsequently cleaned, the user should verify the SIR and ECM values after cleaning. J-STD-001 may be used for process characterization.
- Halide measuring <0.05% by weight in flux solids and may be known as halide-free. If the M0 or M1 flux passes SIR when cleaned, but fails when not cleaned, this flux shall always be cleaned.
- 4. Fluxes that are not meant to be removed, require testing only in the no-clean state.

800-643-7822 www.eptac.com


ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-004, Corrosion Testing

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

How 001 discusses 005

3.4 Solder Paste Solder paste shall⁵ be in accordance with J-STD-005 or equivalent. Solder paste shall⁵ also meet the requirements of 3.2 and 3.3.

(5) Class 1-Defect Class 2-Defect Class 3-Defect

Sponsored by:

STANLEY Supply & Services

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

IPC J-STD-005, Requirements for Solder Paste

- There are two (2) documents involved with solder paste.
 - J-STD-005 Requirements for Solder Paste
 - IPC-HDBK-005, Guide to Solder Paste Assessment
- Each documents is helpful to provide the correct information to qualify solder paste.

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

IPC J-STD-005, Requirements for Solder Paste

- This standard provides information on:
 - Characterizing solder paste
 - Testing solder paste
- It discusses:
 - Solder powder
 - Paste flux
 - Powder shapes
 - Etc.

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

IPC J-STD-005, Requirements for Solder Paste

- Section 3.3.2 Powder Size is shown in table form for Type 1 through Type 6
- Each type is based upon the size of the powder
- Must be used in conjunction with the flux specification 004.

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

How 001 discusses 006

3.2 Solder Solder alloys shall³ be in accordance with J-STD-006 or equivalent. Solder alloys other than Sn60A, Pb36B, and Sn63A which provide the required electrical and mechanical attributes may be used if all other conditions of this standard are met and objective evidence of

such is available for review. Flux that is part of flux-cored solder wire shall³ meet the requirements of 3.3. Flux percentage is optional.

(3) Class 1-Defect Class 2-Defect Class 3-Defect

3.2.1 Solder - Lead Free Solder alloys less than 0.1% lead by weight not listed by J-STD-006 may be used when such use is agreed upon by the manufacturer and the user.

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

IPC J-STD-006, Requirements for Solder

 This is the specification that replaced QQ-S-571, the military solder material specification.

Sponsored by:

Supply & Services

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-006, Requirements for Solder

Section 1.2.3 Solder Forms

P - Paste (Cream)

B - Bar

D - Powder

R - Ribbon

W-Wire

S - Special

H - Sphere

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-006, Requirements for Solder

Covers:

- Alloy composition
- Alloy impurities
- Solder forms

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-006, Requirements for Solder

Table 4-1 Requirements and Inspection Routine

Requirement Paragraph	Inspections	Inspection Method	Qualificati on Inspection	Quality Conformance Inspection
3.1	Material		All Solder Products	All Solder Products
3.2	Alloy Composition	Standard Analytical Procedures	All Solder Products	All Solder Products
3.3	Alloy Impurities	Standard Analytical Procedures	All Solder Products	All Solder Products
3.4.1	Cross-sectional Area, Length, Mass	Standard Measurement Procedures	Bar Solder	Bar Solder
3.4.2	Diameter, Mass	Standard Measurement Procedures	Wire Solder	Wire Solder
3.4.3	Thickness, Width, Mass	Standard Measurement Procedures	Ribbon Solder	Ribbon Solder
3.4.4.1	Powder Size	IPC-TM-650 2.2.14.3	Solder Powder	Solder Powder
3.4.4.1	Powder Particle Size Distribution	IPC-TM-850 2.2.14 2.2.14.1 2.2.14.2	Solder Powder	Solder Powder
3.4.4.2	Powder Shape	Visual Light Beam Scatter Microscopic Imaging	Solder Powder	Solder Powder
3.5.1	Solder Core	Visual	Flux Cored Solder	Flux Cored Solder
3.5.1.1	Spitting	IPC-TM-650 2.4.48	Flux Cored Solder	
3.5.2	Flux Coating	Visual	Flux Coated Solder	Flux Coated Solder
3.6.1.	Flux Percentage	IPC-TM-650 2.3.34.1	Fluxed Solder	Fluxed Solder
3.6.2	Flux Classification	IPC/EIA J-STD-004	Fluxed Solder	Fluxed Solder
3.6.3	Solder pool	IPC-TM-650 2.4.49	Fluxed Solder	
3.6.4	Flux Residue Dryness	IPC-TM-650 2.4.47	Fluxed Solder	
3.7	Packaging and Labeling	Visual	All Solder Products	

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

IPC J-STD-006, Requirements for Solder

Table A-1 Composition, and Temperature Characteristics of Lead-free Solder Alloys 1,2

										Celsius		°Fahrenheit	
Alloy Name	Former Name ³	Sn %	Ag %	Bi %	In %	Sb %	Cu %	Other Elements %	SOL	LIQ	SOL	LIQ	
In52Sn48		REM-48.0			52.0				118	e	244.4	e	
Sn42Bi58		REM-42.0		58.0					138	e	280.4	r	
Sn95.5Ag3.9Cu0.6		Rem-95.5	3.9				0.6		217	221	422.6	430	
Sn95.5 Ag3.8Cu0.7		REM-95.5	3.8				0.7		217	221	422.6	430	
Sn95Ag5		REM-95.0	5.0						221	245	429.8	473.0	
Sn95Sb54	Sb5	REM-95.0				4.0 to 6.0			235	240	455.0	464.0	
Sn96Ag2.5Cu0.5Bi1		REM-96.0	2.5	1.0			0.5		214	218	417.2	424.4	

Sponsored by:

Supply & Services

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

IPC J-STD-006, Requirements for Solder

 Composition and Temperature Characteristics of Common Tin-Lead Alloys

									°Celsius		°Fahrenheit	
Alloy Name	Former Name ³	Sn %	Pb %	Ag %	Bi %	In %	Sb %	Other Elements %	SOL	LIQ	SOL	LIQ
JEDOFOTO.JCUL.J	·	30.0	PUBLICATION.					Oil. 1.3	103	213	301.7	717.0
Sn50Pb50	Sn50	50.0	REM-50.0						183	216	361.4	420.8
Sn50Pb50Sb0.4 4	Sn50*	50.0	REM-50.0				0.2 to 0.5		183	216	361.4	420.8
In20Sn54Pb26		54.0	REM-26.0			20.0			136	152	276.8	305.6
Sn60Pb37.5Bi2.5		60.0	REM-37.5		2.5				180	185	356.0	365.0
Sn60Pb38Cu2		60.0	REM-38.0					Cu: 2.0	183	191	361.4	375.8
Sn60Pb40	Sn60	60.0	REM-40.0						183	191	361.4	375.8
Sn60Pb40Sb0.4 4	Sn60*	60.0	REM-40.0				0.2 to 0.5		183	191	361.4	375.8
Sn62Pb36Ag2	Sn62	62.0	REM-36.0	2.0					179	e	354.2	e
Sn62Pb36Ag02Sb0.4 4	Sn62*	62.0	REM-36.0	2.0			0.2 to 0.5		179	e	354.2	e
Sn63Pb37	Sn63	63.0	REM-37.0						183	e	361.4	e
Sn63Pb37Sb0.4 4	Sn63*	63.0	REM-37.0	·			0.2 to 0.5		183	e	361.4	e
Sn70Pb30	Sn70	70.0	REM-30.0						183	193	361.4	379.4

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Conclusion

- The specifications mentioned discuss important information which needs to be understood
- Let us know of your interest in having session covering these topics

Sponsored by:

Supply & Services

800-643-7822 www.eptac.com

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

Thank you

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Supply & Services

Upcoming Webinars

New Webinars added every month.

Check back at:

http://www.eptac.com/webinars/upcoming.htm

Or contact us at: 1.800.643.7822

ABOUT THE PRESENTER Leo Lambert Vice President, Technical Director

Sponsored by:

Further Information

For questions regarding this webinar, please contact Leo Lambert at

leo@eptac.com

For information on any of EPTAC's or IPC's Certification Courses, please visit our website at http://www.eptac.com